West Coast Theoretical Chemistry Symposium & TeraChem/FMS developer meeting

Basile attended the West Coast Theoretical Chemistry Symposium, organized at Stanford University for the 50th birthday of Todd J. Martínez.

This Symposium was directly followed by the first TeraChem/FMS developer meeting. TeraChem is a GPU-accelerated quantum chemical package that can be interfaced with the nonadiabatic dynamics method Full Multiple Spawning (FMS). Both codes are used in the ISP group and this developer meeting was an exciting opportunity to discuss their future directions and developments.

Participants to the first TeraChem/FMS developer meeting, in front of the Old Chemistry Building at Stanford University.


CECAM School on Nonadiabatic Dynamics

From February 26 to March 2, Basile co-organized a CECAM School entitled “Nonadiabatic Molecular Dynamics in Three Different Flavors” with Todd Martínez (Stanford University), Graham Worth (University College London), and Ivano Tavernelli (IBM Zürich). The School took place at the CECAM Headquarter in Lausanne (Switzerland).


The central idea of this School was to introduce the 40 participants to general concepts of computational photochemistry as well as three distinct methods for nonadiabatic molecular dynamics: Multiconfiguration Time-Dependent Hartree (MCTDH), Ab Initio Multiple Spawning (AIMS), and Trajectory Surface Hopping (TSH). The morning was dedicated to lectures for each method, and exercises on the computer were organized each afternoon. The main goal of these exercises was for the participants to play with each technique and to be able to use them, maybe, in their own research.

Intensive coffee breaks
Group picture on the last day of the School.


Review on nonadiabatic quantum dynamics methods

What happens to a molecule after it absorbs light? Have a look at our review freshly published in Chemical Reviews to discover different theoretical approaches that aim to answer this question. We focus our attention on nonadiabatic frameworks that can be derived from the time-dependent molecular Schrödinger equation and employ traveling Gaussian functions to describe nuclear wavefunctions. We discuss in details the different approximations used to produce methods that are compatible with an on-the-fly propagation of the Schrödinger equation for molecules in their full configuration space, such as Ab Initio Multiple Spawning (AIMS), MultiConfigurational Ehrenfest (MCE), or variational Multi-Configurational Gaussian (vMCG).

Ab Initio Nonadiabatic Quantum Molecular Dynamics, by Basile F. E. Curchod and Todd J. Martínez, Chemical Reviews (2018). DOI: 10.1021/acs.chemrev.7b00423

(No, this wasn’t a competition on the maximum number of adjectives one can we used to qualify “dynamics”.)


COST Workshop on the interaction between light and molecules in interstellar space

Basile organized with Petr Slavíček, Eva Muchova, and Jean-Hugues Fillion, a workshop entitled “Formation and destruction of molecules by UV and X-ray radiation”, in the context of the COST Action “Our Astro-Chemical History“. This workshop took place at the University of Bristol and triggered very stimulating discussions between theoretical and experimental chemists on the effect of UV and X-ray radiations on molecules in interstellar space.


Picture from http://cost.obs.ujf-grenoble.fr/outreach